
 

ABSTRACT

 

We have developed a high-performance, flexible
scheme for interpolating multi-dimensional data. The tech-
nique can reproduce exactly the results obtained, for exam-
ple, from Ordinary Kriging and related techniques in 3D, or
from Thin-Plate Splines (Briggs' minimum-curvature algo-
rithm) in 2D. Moreover, compared to traditional implemen-
tations of these algorithms, our method enjoys large
computational-cost savings. 

The new approach produces an interpolation that
obeys a Partial Differential Equation (PDE). The PDE may
arise from physically based arguments, but its form can
vary widely. It might be specified only implicitly (as through
a Model Variogram), or be nonlinear (although a perform-
ance penalty could then apply).

While a formal equivalence between Kriging and
Splines has been known for some time (Matheron (1980)),
the present derivation, from radial basis functions, further
illuminates this connection. Thus, for example, we can
make explicit the PDEs that underlie some of the Model
Variograms most often used in Geostatistics. Besides its
practical utility, the work thereby acquires a theoretical
interest.

 

BACKGROUND

 

The aim of this paper is to explore the close connec-
tions between several seemingly different topics:  Kriging;
radial basis function (RBF) interpolations; Spline interpola-
tions; and the solutions of Partial Differential Equations
(PDEs). We demonstrate that these techniques can pro-
duce families of identical interpolations. 

We start with some notation. Throughout this paper, we
denote vectors in a lower case boldface font, and matrices

in an upper case boldface. Let  be the position of a

control point at which some scalar value is known. We

denote by  an interpolation which passes through the

set of  control points . 

 

KRIGING

Simple Kriging

 

In the traditional formulation of simple Kriging (and its
derivatives; Isaaks and Srivastava (1989)), one estimates

 at some interpolation point  from a weighted lin-

ear combination of the 

, (1)

where  is the vector with components  and 

denotes the inner (dot) product between two vectors. The
weight vector  is found by solving the linear system

, (2)

where the  are the covariances between

control points in the assumed model, and 

gives the covariances between the control points and .

We choose simple Kriging for its mathematical simplic-
ity, and because most (if not all) of the other Kriging tech-
niques can be derived from simple Kriging via additional
constraints and/or via integrals of the resulting interpolation
(e.g. ordinary Kriging, universal Kriging or Kriging with a
trend, block Kriging).

 

Dual Kriging

 

In the dual Kriging formulation (Matheron (1982), or
Royer and Vieira (1984), for an English example), one
forms the estimate  from a single set of weights ,

. (3)

The unknown  is obtained by solving

. (4)

Details are given in Appendix 1, where dual formulation
analogues of techniques like Kriging with a trend are also
outlined.
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Efficiency

 

From the standpoint of the operations count required to
compute an interpolation, a direct implementation of equa-
tions (3) and (4) offers a slight advantage over equations
(1) and (2). Recall that 

 

C

 

 is . 
The dual formulation requires solving only the single

linear system (4), which costs  operations for practi-
cal algorithms (e.g. Press, et al. (1992) for a readable dis-
cussion). In order to evaluate the interpolation at 

different grid points, one needs a further  opera-

tions (  evaluations of (3), each of which requires an

 dot product between  and ). Thus a

direct implementation of dual Kriging requires a grand total
of

(5)

operations.
The simple formulation requires solving the linear sys-

tem (2) at each of the  grid points. A direct implementa-

tion requires  operations. Evaluation of (1) over

the grid requires a further  operations, yielding a
total cost of 

(6)

operations. A more sophisticated algorithm might be to

solve (2) by inverting  once, costing . Then, over

each of  grid points, it would evaluate . Each

matrix multiplication requires  operations, resulting

in . The total cost of this algorithm being

, (7)

and it might be more efficient than the direct implementa-
tion (depending on how  scales with ). Remember,
sampling is typically pointwise (spot sampling) or linewise
(drill strings, traverses, flight lines), and hence  could be

as high as  or even , although  is
probably more common.

Clearly, the dual formulation is more efficient than
either of the simple formulation algorithms. Equally clearly,
when  (common for real world applications),

 

none

 

 of these algorithms (as stated) is practical on com-
monly available computers. This observation has led to the
development of many localised algorithms, whose primary
computational reason for existence is to force  down to
something manageable (like 40 or 50). Of course these
algorithms require large and complex bookkeeping compo-

nents, for such operations as nearest neighbourhood
searches. We will not consider the ramifications of this
modification here.

 

RBF INTERPOLATION

 

The theoretical underpinnings of radial basis function
interpolation are described in Powell (1992), and the refer-
ences found therein. Briefly, although the method is not for-
mulated in the language of spatial statistics, the actual
interpolation is computed nearly identically to dual Kriging,

. (8)

Here  is as before, and  is some polynomial of the

components of . The  and the coefficients of the poly-

nomial  satisfy an augmented system

. (9)

The only difference between equations (8)-(9) and equa-
tions (3)-(4) is the addition of the polynomial term ,

resulting in the augmentation of the simple Kriging system
of equations (Appendix 1). When  we recover

(3), and when , we have the dual Kriging ana-

logue of universal Kriging (also known as Kriging with a
trend). 

In RBF parlance, Kriging’s model covariance functions,
, are the radial basis functions upon which the

technique is founded. Just as in Kriging, practitioners of
RBF interpolation choose the form of  from a small set of
functions known to be admissible (principally by inducing

the matrix  to be invertible). The efficiency of RBF inter-
polation is identical to that of dual Kriging (e.g. described
by expression (5)).

 

PARTIAL DIFFERENTIAL EQUATIONS

Links to RBFs and Kriging

 

We now motivate the connection between dual Kriging,
radial basis functions, and linear PDEs by relating the PDE
formalism to the RBF formalism. Suppose that, for a given

, there exists an operator  such that

, (10)

where  is Dirac’s delta, and

. (11)
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For example, if  is a differential operator,  is the Green’s

function of , and  is a homogeneous solution to

the PDE. Admittedly, (10)-(11) are strong assumptions to
make, however, our aim here is to outline an idea, and we
do not wish to cloud the simplicity of that idea with mathe-
matical trickery dealing with difficult cases.

Applying  to (8) gives

. (12)

This corresponds to an operator equation, where  is the

response of a system (described by ) to a set of point

forces of magnitude  at points . The coefficients of

 determine, or are determined by, the boundary con-

ditions, depending upon your point of view. Equation (12),
together with adequate BCs, renders the problem positive
definite. Apart from the question of BCs, this problem is
equivalent to the Kriging (or RBF) problem. In fact, this is
potentially an interesting route to a proof of the existence of
unique and stable solutions to the latter problems (at least
for certain  and ). Thus it would seem plausible

that the Green’s functions of invertible PDE problems are
admissible as RBFs. We have not shown that an  exists

for arbitrary , and indeed such a statement need not be
true. However, the freedom in choosing boundary condi-
tions for the Green’s function problem, together with the
existence of formal inverses defined in terms of Fourier
methods, can take one a lot further in this direction than
one would initially think possible.

Now suppose in the following that  is a differential
operator. Then we might consider discretising the system
(12) via a Finite Difference approximation of  (more gen-
erally, one could include quadrature for an integro-differen-
tial ). In this discretisation, wherever  is known, 

is unknown and vice versa. So the discretisation of equa-
tion (12) needs re-arrangement such that all unknowns
appear on the left hand side, and all knowns on the right
hand side. 

Next, one imposes boundary conditions (BCs) which
implicitly determine . An example, relevant to ore

grade estimation, might be to require that  on a
boundary sufficiently distant from the region of interest.

Numerics
We have just shown that certain simple Kriging, dual

Kriging and RBF interpolations are equivalent to solving a
PDE subject to boundary conditions. We can now employ
one of the fast PDE solvers in order to compute an interpo-
lation.

We solve the discretised version of (12) using the full
multigrid finite difference method. As discussed in (for
example) Press, et al. (1992), this technique solves the

problem on a grid of  points in

(13)

operations. 
This is independent of the number of control points, and

in fact, the method actually converges faster with increas-
ing density of control points. Compare the scaling behav-
iour (13) with those of the more direct formulations of
Kriging or RBF interpolations: expressions (5), (6), and (7). 

As a practical matter, one commonly knows only  or

only  directly. Determining the missing member of the
pair is straightforward upon consideration of the Fourier
Transform of equation (10) (although the resulting convolu-
tion operator may be unstable). 

Our current multigrid implementation has not yet
reached the full potential speed of , due to practical
difficulties involving the representation of control points on
grids of different scales. The scaling behaviour of our cur-

rent implementation is unquestionably better than 

and probably better than . We regard this as a
difficulty with our current algorithmic strategy rather than a
fundamental problem with a multigrid approach to interpo-
lation.

Example

As a concrete example of this technique, if ,

 is interpreted as displacement, and 

as force , then equation (12) would be the PDE
for a two-dimensional thin plate spline (the minimum curva-
ture interpolation of Briggs (1974), common in geophysical
applications). Higher dimensional analogues of thin plate

splines would simply let , and define  appro-
priately. Interpolations which are stiffer than thin plate
splines can be found from considering higher powers of 
(e.g. the spherical model variogram). 

DISCUSSION

This general approach has the obvious capability to put
smooth interpolation onto a physical basis. If an interpola-
tion is required to satisfy (12) where  is known from phys-
ical arguments, a direct application of our technique will
yield a physically realistic solution. However, beyond this, it
allows some Kriging interpolations to be calculated quickly
using PDE solution methods.

Kriging methods form the basis of modern conditional
simulation techniques, which seek to characterize the vari-
ability of the predicted quantity in addition to its mean
value. It is interesting to contemplate the relationship
between these conditional simulations, and the PDE formu-
lation. If there is an equivalent PDE formulation, what might
it look like? A Gibbs spatial process perhaps?

Since multigrid is an iterative scheme, given a closed
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form expression for  (and its finite difference representa-
tion) we believe that there is no fundamental reason to
restrict application of this technique to linear . For some
classes of nonlinear PDEs, the only challenge to this gen-
eral scheme should be algorithmic details, and a possibility
of scaling performance that is slightly worse than .

We close with the following remark: since some Kriging
problems can clearly be solved by solving PDEs, we sus-
pect that there are many potential synergies to be found in
applications (such as flow field simulation in petroleum
engineering) where the output from an interpolation speci-
fies the geometry for further physical simulation. Both
aspects of the problem could now be solved from within the
same software base. 

APPENDIX 1

RBF Equivalent of Ordinary Kriging
The linear system for simple Kriging arises from a mini-

mization problem. The conditions that the variance is mini-
mized with respect to the unknown parameters , are

expressed as equation (2). For ordinary Kriging, to impose
an unbiased solution, equation (2) must be solved with the
constraint

, (A1)

which also ensures that a constant function is interpolated
exactly. Together, equations (2) and (A1) are solved via the
method of Lagrange multipliers, yielding a new augmented
system (in partitioned matrix format)

. (A2)

We rewrite equation (A2) as

. (A3)

Now, in the Kriging formulation, the value of the interpo-
lation at a point  is expressed as

. (A4)

Here, the inner (dot) product between  dimensional vec-

tors  is denoted by . The augmented vector 

must be constructed such that the equality between the left
two terms of equation (A4) is preserved. The only augmen-
tation that preserves that equality is

. (A5)

Given this, we now derive a radial basis function equiv-
alent to the ordinary Kriging system. Start with the ordinary
Kriging expression for the value at some interpolation point

. (A6)

Since we have assumed  is invertible, and given that it is

also symmetric, it follows that there exists an  such that

. (A7)

These are the radial basis function equations augmented
by a constant offset. This corresponds to the case of Equa-
tion (8) with . This augmented RBF repre-

sentation can be evaluated at to give

. (A8)

But by (A3) we know that this can be rewritten as

. (A9)

Rewriting (A9) as a matrix manipulation, regrouping, and
transposing, we find

. (A10)

Substituting from (A7) it is found

. (A11)

But this is exactly the ordinary Kriging solution for .

Therefore, if there is a solution to the augmented RBF
defined by (A7) then it is equivalent to the ordinary Kriging
solution and vice versa.

Extension for detrending with constrained higher 
order moment

Consider an interpolation of a scalar function of .
The augmented RBF system which includes linear func-
tions of the coordinates in , will interpolate any lin-

ear function exactly. The equations determining the  and

the three coefficients of  are
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Ĉ† f̂ û=
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, (A12)

where  is a vector of the th coordinates of the set of

control points, . (Here,  denotes the th

coordinate at sample point .) Equation (A12) adds further

constraints to the first order moments of the “forces” ,

these being  and . This is

like linearly detrending the data and kriging simultaneously.
The resulting interpolation is 

, (A13)

where . Clearly, higher orders may

be handled similarly, so we have the dual Kriging/RBF ana-
logue to universal Kriging/Kriging with a trend. 
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